Jump to content
Forumu Destekleyenlere Katılın ×
Paticik Forumları
2000 lerden beri faal olan, çok şukela bir paylaşım platformuyuz. Hoşgeldiniz.

Matematik bilmecesi-1850'de sorulmuş


sostizm

Öne çıkan mesajlar

ingilizce kusura bakmayın.


Kirkman's schoolgirl problem

Rev. Thomas Penyngton Kirkman proposed this problem in 1850 in The Lady's and Gentleman's Diary, page 48.

Fifteen young ladies in a school walk out three abreast for seven days in succession: it is required to arrange them daily so that no two shall walk twice abreast.

İpucu isteyenlere. isterseniz bakmayın.

ipucu

You can get started pretty easily. Name the 15 girls by the first 15 letters of the alphabet. Then on the first day, just choose the first thing that comes to mind, namely,

ABC DEF GHI JKL MNO.

A schedule for the second day is easy, too, but you have to be at least a little careful about it. If you start off with ADG BEH CFI, then you can't complete the second day's schedule. But it's still pretty easy to do the second day. One solution is

ADG BEJ CFM HKN ILO.

The third day is a little harder to construct. Good luck on the sixth day. You'll probably have to find a better way than trial and error. No fair looking up the answer!



Best Math puzzle EVER diyenler var(Quora). Yöneylem yaklaşımlarından önce sorulmuş dikkatinizi çekerim.
Link to comment
Sosyal ağlarda paylaş

MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME MEME
Link to comment
Sosyal ağlarda paylaş

sostizm said:

di said:

E soru ne? Kizlarin yerini kac kere degistirmek gerektigini mi soruyo?


yoo 15 kız, 7 gün, üçlü grup,iki kere karşılaşmayacaklar 7 gün boyunca


Hala bi soru yok ortada.

Okudugumdan sunu anliyorum ben

G "giz"in G'si olsun

GGG
GGG
GGG
GGG
GGG

15 tane hatun bu sekilde 7 gun boyunca yuruyolar. Kizlarin yerini her gun degistirmek gerekiyor ki ayni iki kiz yan yana gelmesin.

Haliyle su noktada diyorum ki, kizlarin yerini kac kere degistirmek gerektigini mi soruyor yoksa dizilis nasi degisir diye mi soruyor nedir ?
Link to comment
Sosyal ağlarda paylaş

×
×
  • Yeni Oluştur...