Jump to content
Forumu Destekleyenlere Katılın ×
Paticik Forumları
2000 lerden beri faal olan, çok şukela bir paylaşım platformuyuz. Hoşgeldiniz.

WE DON'T NEED NO


OogahBoogah

Öne çıkan mesajlar

THIS THREAD SUCKS AND IS NOW ABOUT WANKEL ENGINE


said:

The Wankel engine is a type of internal combustion engine which uses a rotary design to convert pressure into a rotating motion instead of using reciprocating pistons. Its four-stroke cycle is generally generated in a space between the inside of an oval-like epitrochoid-shaped housing and a roughly triangular rotor. This design delivers smooth high-rpm power from a compact, lightweight engine. Since its introduction the engine has been commonly referred to as the rotary engine, though this name is also applied to several completely different designs.

The engine was invented by engineer Felix Wankel. He began its development in the early 1950s at NSU Motorenwerke AG (NSU) before completing a working, running prototype in 1957. NSU then subsequently licenced the concept to other companies across the globe, who added more efforts and improvements in the 1950s and 1960s.

Because of their compact, lightweight design, Wankel rotary engines have been installed in a variety of vehicles and devices such as automobiles including racing cars, along with aircraft, go-karts, personal water craft, chain saws, and auxiliary power units. The most extensive automotive use of the Wankel engine has been by the Japanese company Mazda.

http://www.karting1.co.uk/pics/wankel-inside-kart-engine.jpg

Advantages
NSU Wankel Spider, the first line of cars sold with the Wankel engine.
Mazda Cosmo, the first Wankel engine sports car.

Wankel engines have several major advantages over reciprocating piston designs, in addition to having higher output for similar displacement and physical size.

Wankel engines are considerably simpler and contain far fewer moving parts. For instance, because valving is accomplished by simple ports cut into the walls of the rotor housing, they have no valves or complex valve trains; in addition, since the rotor is geared directly to the output shaft, there is no need for connecting rods, a conventional crankshaft, crankshaft balance weights, etc. The elimination of these parts not only makes a Wankel engine much lighter (typically half that of a conventional engine of equivalent power), but it also completely eliminates the reciprocating mass of a piston engine with its internal strain and inherent vibration due to repeated acceleration and deceleration, producing not only a smoother flow of power but also the ability to produce more power by running at higher rpm.

Because of the quasi-overlap of the power strokes that cause the smoothness of the engine, and the avoidance of the 4-stroke cycle in a reciprocating engine, the wankel engine is very quick to react to throttle changes and is able to deliver a near-instantaneous surge of power when the demand arises, especially at higher rpms counts. This is more true when compared to 4 cylinder reciprocating engines and less true when compared to higher cylinder counts.

In addition to the enhanced reliability by virtue of the complete removal of this reciprocating stress on internal parts, the engine is constructed with an iron rotor within a housing made of aluminium, which has greater thermal expansion. This ensures that even a severely overheated Wankel engine cannot seize, as would likely occur in an overheated piston engine. This is a substantial safety benefit in aircraft use since no valves can burn out.

A further advantage of the Wankel engine for use in aircraft is the fact that a Wankel engine can have a smaller frontal area than a piston engine of equivalent power. The simplicity of design and smaller size of the Wankel engine also allows for savings in construction costs, compared to piston engines of comparable power output.

Of perhaps the most importance is that Wankel engines are almost immune to catastrophic failure. A Wankel that loses compression, cooling or oil pressure will lose a large amount of power, and will die over a short period of time; however, it will usually continue to produce some power during that time. Piston engines under the same circumstances are prone to seizing or breaking parts that almost certainly results in complete internal destruction of the engine and instant loss of power. For this reason Wankel engines are very well suited to aircraft. However, a Wankel is extremely susceptible to damage from pre-ignition, also known as detonation or "knocking".[citation needed]

Due to a 50% longer stroke duration compared to a four stroke engine, there is more time to complete the combustion. This leads to greater suitability for direct injection. A Wankel rotary engine has stronger flows of air-fuel mixture and a longer operating cycle than a reciprocating engine, so it realizes concomitantly thorough mixing of hydrogen and air. The result is a homogeneous mixture, which is crucial for hydrogen combustion.

http://www.zercustoms.com/car-show/albums/userpics/10001/Mazda-RX8-2.jpg
Link to comment
Sosyal ağlarda paylaş

×
×
  • Yeni Oluştur...