dory Mesaj tarihi: Ocak 19, 2010 Paylaş Mesaj tarihi: Ocak 19, 2010 proje sunumu hazirliyorum da, anlamadigim bi sekilde hata veriyor, hatami da bulamıyorum 1 saattir boyle tekme aticam artiik bilgisayara, pc'sinde olan varsa ne biliyim kodlarimi gostertsem bana bi yardim etse ya da verdigi hayati soyleyim: sunum hazirliyorum ve begin{frame} bişiler end{frame} seklinde slaytlar hazirlaniyor, b tane end frame kismini gosteriyor program ve invalid in math mode diyo. o arada da oyle bisi yok neyse iste sonuc olarak bulamadim ben proje donemleri eminim kullanan vardir bi bakiverse negzel olur. Link to comment Sosyal ağlarda paylaş Daha fazla paylaşım seçeneği…
dory Mesaj tarihi: Ocak 19, 2010 Konuyu açan Paylaş Mesaj tarihi: Ocak 19, 2010 neden yardim lazim oldugunda kimseyi bulamıyorum ben su forumda =( kodlarim documentclass{beamer} usepackage{beamerthemeshadow} usepackage{amsmath,amssymb,latexsym,} usepackage[turkish]{babel} usepackage[latin5]{inputenc} %%%%%%%%%%PRESENTATION THEMES%%%%%%%%%% %usetheme{AnnArbor} %usetheme{Antibes} %usetheme{Bergen} %usetheme{Berkeley} %usetheme{Berlin} %usetheme{Boadilla} %usetheme{CambridgeUS} %usetheme{Copenhagen} %usetheme{Darmstadt} %usetheme{Dresden} %usetheme{Frankfurt} %usetheme{Goettingen} %usetheme{Hannover} %usetheme{Ilmenau} %usetheme{JuanLesPins} %usetheme{Luebeck} %usetheme{Madrid} %usetheme{Malmoe} %usetheme{Marburg} %usetheme{Montpellier} %usetheme{PaloAlto} %usetheme{Pittsburgh} %usetheme{Rochester} %usetheme{Singapore} %usetheme{Szeged} %usetheme{Warsaw} %%%%%%%%%%OUTER THEMES%%%%%%%%%% %useoutertheme{infolines} %useoutertheme{miniframes} %useoutertheme{shadow} %useoutertheme{sidebar} %useoutertheme{smoothbars} %useoutertheme{smoothtree} %useoutertheme{split} %useoutertheme{tree} %%%%%%%%%%INNER THEMES%%%%%%%%%% %useinnertheme{circles} %useinnertheme{rectangles} %useinnertheme{inmargin} %useinnertheme{rounded} %%%%%%%%%%FONT THEMES%%%%%%%%%% %usefonttheme{professionalfonts} %usefonttheme{serif} %usefonttheme{structurebold} %usefonttheme{structureitalicserif} %usefonttheme{structuresmallcapsserif} %%%%%%%%%%COLOR THEMES%%%%%%%%%% %usecolortheme{albatross} %usecolortheme{beetle} %usecolortheme{crane} %usecolortheme{dove} %usecolortheme{fly} %usecolortheme{seagull} %usecolortheme{wolverine} %usecolortheme{beaver} %%%%%%%%%%OUTER COLOR THEMES%%%%%%%%%% %usecolortheme{whale} %usecolortheme{seahorse} %usecolortheme{dolphin} %%%%%%%%%%INNER COLOR THEMES%%%%%%%%%% %usecolortheme{lily} %usecolortheme{orchid} %usecolortheme{rose} %usecolortheme{sidebartab} %beamersetaveragebackground{cyan} %beamertemplatesolidbackgroundcolor{green} title[Calculus]{Symmetry Groups} subtitle{MCS 491Graduation Project I} author{isim falan} institute[c{C}ankaya Univ.]{c{C}ankaya University Department of Mathematics and Computer Science} date{today} begin{document} begin{frame} titlepage end{frame} begin{frame} tableofcontents end{frame} section{Introduction} begin{frame} frametitle{Introduction} BURAYA INTRODUCTION YAZILCAK end{frame} section{Symmetry Groups} subsection{Isometries} begin{frame} frametitle{Isometries} begin{definition} An isometry of n-dimensional space $R^{n}$ is a function from $R^{n}$ onto $R^{n}$ that preserves distance. end{definition} end{frame} begin{frame} frametitle{Isometries} begin{definition} Let $F$ be a set of points in $R^{n}$. The symmetry group of $F$ in $R^{n}$ is the set of all isometries of $R^{n}$ that carry $F$ onto itself. end{definition} end{frame} begin{frame} frametitle{Isometries} A $reflection across$ a $line$ $L$ is that transformation that leaves every point of $L$ fixed and takes every point $Q$,not on $L$, to the point $Qprime$ so that L is the perpendicular bisector of the line segment from Q to $Qprime$. end{frame} begin{frame} frametitle{Isometries} A $glide-reflection$ is the product of a translation and a reflection across the line containing the translation vector. end{frame} subsection{Classification of Finite Plane Symmetry Groups} begin{frame} frametitle{Classification of Finite Plane Symmetry Groups} begin{theorem}[Finite Symmetry Groups in the Plane] The only finite symmetry groups are $Z_{n}$ and $D_{n}$. end{theorem} end{frame} begin{frame} frametitle{Classification of Finite Groups of Rotations in $R^{3}$} begin{theorem}[Finite Groups of Rotations in $R^{3}$] Up to isomorphism, the finite groups of rotations in $R^{3}$ are $Z_{n}$, $D_{n}$ $A_{4}$ ,$S_{4}$ and $A_{5}$. end{theorem} end{frame} begin{frame} $textbf{EXAMPLE 1}$ We determine the group $G$ of rotations of the solid in Figure 4, which is composed of six congruent squares and eight congruent triangles. We begin by singling out any one of the squares. Obviously, there are four rotations that map this square to itself, and the designated square can be rotated to the location of any of the other five. So, by the Orbit-Stabilizer Theorem, the rotation group has order $4.6=24$. By Theorem 1.2, $G$ is one of $Z_{24},D_{12} and S_{4}$. But each of the first two groups has exactly two elements of order 4, whereas $G$ has more than two. So,$G$ is isomorphic to $S_{4}$. end{frame} begin{frame} 5.sekil konulcak buraya. end{frame} section{Frieze Groups and Crystallographic Groups} begin{frame} frametitle{The Frieze Groups} The $discrete$ $frieze$ $groups$ are the plane symmetry groups of patterns whose subgroups of translations are isomorphic to $Z$. end{frame} begin{frame} The symmetry group of pattern I (Figure 7) consist of translations only. Letting x denote a translation to the right of one unit ( That is the distance between two consecutive R's), we may write the symmetry group of pattern I as begin{equation}label{} F_{1}={x^{n}|nin Z} end{equation} end{frame} begin{frame} The group for pattern II (Figure 8), like that of pattern I, is infinitely cyclic. Letting x donates a glide-reflection, we may write the symmetry group of pattern II as begin{equation}label{} F_{2}={x^{n}|nin Z}. end{equation} end{frame} begin{frame} The symmetry group for pattern III(Figure 9) is generated by a translation x and a reflection y across the dashed vertical line. begin{equation}label{} F_{3}={x^{n}y^{m}|n in Z, m=0 mbox{ or } 1}. end{equation} end{frame} begin{frame} In pattern IV, (Figure 10), the symmetry group $F_{4}$ is generated by a translation x and a rotation y of $180^{circ}$ about a point p midway between consecutive $R$'s(such a rotation is often called a $half-turn$). This group, like $F_{3}$, is also infinite dihedral. begin{equation}label{} F_{4}={x^{n}y^{m}|n in Z, m=0 mbox{ or } 1}. end{equation} end{frame} begin{frame} buraya tablo 28.9 koncak end{frame} subsection{The Crystallographic Groups} begin{frame} The seven frieze groups catalog all symmetry groups that leave a design invariant under all multiples of just one translation. end{frame} begin{frame} However,there are 17 additional kinds of discrete plane symmetry groups that arise from infinitely repeating designs in a plane. end{frame} begin{frame} These groups are the symmetry groups of plane patterns whose subgroups of translations are isomorphic to Z$bigoplus$Z. end{frame} begin{frame} Consequently,the patterns are invariant under linear combinations of two linearly independent translations.These 17 groups were first studied by 19th-century crystallographers and are often called the plane $emph{crystallographic groups}$.Another term occasionally used for these groups is $emph{wallpaper groups}$. end{frame} begin{frame} BURAYA 2811 KONCAK end{frame} section{Symmetry and Counting} subsection{Motivation} begin{frame} frametitle{Motivation} Permutation groups naturally arise in many situations involving symmetrical designs or arrangements. Consider, for example, the text of coloring the six vertices of a regular hexagon so that there are black and three are white. Figure 27 shows the end{frame} end{document} Link to comment Sosyal ağlarda paylaş Daha fazla paylaşım seçeneği…
fizban Mesaj tarihi: Ocak 19, 2010 Paylaş Mesaj tarihi: Ocak 19, 2010 problem tam nerede, deneye deneye onu bul bakayım. su an kurulu deil makinemde. Link to comment Sosyal ağlarda paylaş Daha fazla paylaşım seçeneği…
Ardeth Mesaj tarihi: Ocak 20, 2010 Paylaş Mesaj tarihi: Ocak 20, 2010 ben winedt kullanıyorum gerçi frame'e ihtiyaç duymadım daha ama o hatayı genelde $$ işaretlerinin arasına yanlış birşeyler koyunca veriyor diye hatırlıyorum. Link to comment Sosyal ağlarda paylaş Daha fazla paylaşım seçeneği…
dory Mesaj tarihi: Ocak 21, 2010 Konuyu açan Paylaş Mesaj tarihi: Ocak 21, 2010 cozdum sorunu $$'dan kaynakli degil orlari dikkatli yapmistim zaten ^^ seymiş, height falan ayarlama olayı gg imiş burda. raporda sorun yoktu da frame'e alinca sigmadi herhalde =// onu silince duzeldi kod, baska bi yerde sizei ayarladim nabalim yine de tesekkurler :F @ardeth frame olayı sunum hazirlamak icin kullaniliyo. rapor bitti onla ugrasiyorum simdik. Link to comment Sosyal ağlarda paylaş Daha fazla paylaşım seçeneği…
Öne çıkan mesajlar